Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2): L023001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491591

RESUMO

Despite past investigations of the buckling instability, the kinetics of the buckling process is not well understood. We develop a generic framework for determining the buckling kinetics of membranes under compressive stress (σ_{b}) via molecular dynamics simulations. The buckling time (t_{b}) is modeled by an extended Boltzmann-Arrhenius-Zhurkov equation accounting for temperature (T) and scale-dependent bending rigidity. We discern three regimes: (I) t_{b} decreases with T; (II) t_{b} increases with T; (III) t_{b} is T independent. Regime II coheres with the predictions of the theory of fluctuating sheets (TFS). Regime I is seen at small scales due to fluctuations about equilibrium and is not predicted by the TFS.

2.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397863

RESUMO

A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of their mechanical characteristics and responses in fluidic environments. A novel scaffold geometry was designed, considering the requirements of cellular proliferation and mechanical properties. Specimens with the same dimensions and porosity of 45% were studied to fully describe and understand the yielding behavior. Mechanical testing indicated higher apparent moduli in the PLA-based scaffolds, while compressive strength decreased with CS/MWCNTs reinforcement due to nanoscale challenges in 3D printing. Mechanical modeling revealed lower stresses in the PLA scaffolds, attributed to the molecular mass of the filler. Despite modeling challenges, adjustments improved simulation accuracy, aligning well with experimental values. Material and reinforcement choices significantly influenced responses to mechanical loads, emphasizing optimal structural robustness. Computational fluid dynamics emphasized the significance of scaffold permeability and wall shear stress in influencing bone tissue growth. For an inlet velocity of 0.1 mm/s, the permeability value was estimated at 4.41 × 10-9 m2, which is in the acceptable range close to human natural bone permeability. The average wall shear stress (WSS) value that indicates the mechanical stimuli produced by cells was calculated to be 2.48 mPa, which is within the range of the reported literature values for promoting a higher proliferation rate and improving osteogenic differentiation. Overall, a holistic approach was utilized to achieve a delicate balance between structural robustness and optimal fluidic conditions, in order to enhance the overall performance of scaffolds in tissue engineering applications.

3.
Phys Rev E ; 102(3-1): 030501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075882

RESUMO

Interfacial shear strength (IFSS) is a key property in the design of composites and nanocomposites. Many simulation studies quantify the interfacial characteristics of sandwichlike specimens in terms of the IFSS and pullout force; a common feature of these studies is that they employ finite model systems and are therefore subject to strong finite size effects. We propose an alternative approach which is applicable to both aperiodic and periodic computational specimens. The interfaces are subjected to multiple shear deformation simulations over a wide range of temperatures (T) and shear stresses (σ_{zx}). From these simulations we collect the failure times (t_{f}); by analyzing them in the framework of an extended Boltzmann-Arrhenius-Zhurkov kinetic equation we derive the IFSS, the limiting stress for barrierless transitions, the activation energy, the activation volume for failure, the sliding velocities, and a local elastic shear modulus for the interface. We test our methodology on epoxy diglycidyl ether bisphenol F-diethyl toluene diamine interfaces in contact with (i) pristine graphene, (ii) graphene with single-atom vacancies, and (iii) graphene with hydroxyl-ΟΗ groups. Differences in the mechanism of interfacial failure among these three systems are discussed.

4.
Soft Matter ; 15(4): 721-733, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30629083

RESUMO

Structural, topological, mechanical and dynamical properties of EPON-862/DETDA epoxy networks are investigated with Molecular Dynamics (MD) simulations. The epoxy networks are composed of the resin Diglycidyl Ether Bisphenol F (DGEBF), also known as EPON-862, and the hardener Diethyl Toluene Diamine (DETDA). Systems with four different crosslinking degrees are examined; the effect of the degree of crosslinking on studied properties is thus determined. The computed quantities are retrieved by employing several simulation strategies and numerical methods of statistical mechanics in order to gain a rigorous and solid understanding of the aforementioned properties as well as to assess the accuracy and applicability of the methods employed. We quantify and analyze the local structure of the EPON-862/DETDA epoxy networks through the partial pair distribution functions, the Faber-Ziman partial structure factors and through simulated X-ray diffraction patterns, demonstrating good agreement with an experimental spectrum from a similar epoxy resin. The topology of the networks is examined with the aim of assessing percolation of connectivity, the properties of network fragments (subnetworks), and the distribution of functionalities of the crosslinks. The elastic constants of the systems are retrieved by employing two equilibrium (analysis of volume fluctuations, Parrinello-Rahman strain fluctuation relation) and one nonequilibrium (uniaxial tension/compression deformations at prescribed rate) method. Finally, the glass temperatures of the systems are estimated by calculating the density as a function of temperature and by analyzing the reorientational dynamics of bond vectors which describe relaxation processes at the segment level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...